

Program: B.Sc.

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16 **End Semester Examination: April 2024 Faculty: Science and Technology**

SET: B

Semester: I

Program (Specific): Chemistry Course Type: Max.Marks: 35 Class: S.Y.B.Sc

Name of the Course: Physical and Analytical Chemistry

Course Code: CH-401 Time: 2Hr

Paper: I

Instructions to the candidate:

- 1) There are 4 sections in the question paper. Write each section on a separate page.
- 2) All Sections are compulsory.
- 3) Figures to the right indicate full marks.

Draw a well labeled diagram wherever necessary.

		SEC	CTION: A	
Q1) Multiple choice questions:				5 M
1.	The total number of mole fractions for all components in solution is equal			tion is equal to
	a.1.0 b. 2.0 c. 0.5	d. 0.75		
2.	When a solute is present in trace quantities the following concentration expression is used			
	a. grams/Lit b.mill	igram per kg	c. Normality	d. parts per million
3.	is the standard electrode.			
	a.Hydrogen		b. daniel cell	
	c. silver d. platinum			
4.	The equivalent conductar	nce at infinite di	lution is independent	of its ions is given by
	.			
	a. Wheatstone bridge		Beers' law	
	c. Kohlraush law	d.	Lambert' law	
5	. Equation for Beer's Law		<u> </u>	
	a.A∝bc b. A∝C	c. A∝b	d. A= & bC	

Q2) Very short answer questions (Attempt any 4/6)

4 M

- 1. State Lambert's law.
- 2. Explain the specific conductance.
- 3. What is a standard electrode potential?
- 4. What is adsorption chromatography?
- 5. Explain the Neutralization Point.
- 6. What is a secondary standard?

SECTION: B

Q3) Short answer questions (Attempt any 4/6)

8 M

- 1. Derive the Nernst equation for a given Cell Zn/Zn²⁺//Cd²⁺/Cd.
- 2. Explain the positive and negative deviation in P Vs N graphs.
- 3. Give an account of various chromatography techniques.
- 4. Explain the graph for variation of equivalent conductance with \sqrt{C} .
- 5. What is the Ecell for a cell Cd/Cd²⁺ having 'a' of 0.082, Eo=0.257 at 25°C? F=96500 C, R=8.314 JK⁻¹Mole⁻¹.
- 6. What is the Molar absorptivity for 0.01N of KMnO₄ if the absorbance of the solution is 0.06, path length is 1 cm?

SECTION: C

Q4) Short answer questions (Attempt any 4/6)

8 M

- 1. Explain what is a standard electrode potential.
- 2. Draw the P-N and T-N diagram graphs.
- 3. Explain the process of desalination of water using chromatography.
- 4. Explain the graph of equivalent conductance Vs concentration for weak and strong electrolyte.
- 5. Explain the working of any one standard electrode.
- 6. Show the calculation of λ_0 for weak electrolyte by mathematical method.

SECTION: D

Q5) Solve the following (Any two)

10 M

- 1. What is the Molar absorptivity for 0.01N of KMnO₄, if the % transmittance of the solution is 60%, path length is 1 cm.
- 2. Calculate the electrode potential for a cell having a reaction Cd/Cd²⁺. Its standard electrode potential is -0.439 V and concentration of Zinc ion solution is 0.08 M.
- 3. Calculate λ_0 for CH₃COOH if the λ_0 for CH₃COONa is 91.0, HCl is 426.16 and NaCl is 126.45.